
John Gayda and Timothy Gabb
Glenn Research Center, Cleveland, Ohio

Two Dimensional Viscoelastic Stress Analysis of
a Prototypical JIMO Turbine Wheel

NASA/TM—2005-213650

June 2005



The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a key part
in helping NASA maintain this important role.

The NASA STI Program Office is operated by
Langley Research Center, the Lead Center for
NASA’s scientific and technical information. The
NASA STI Program Office provides access to the
NASA STI Database, the largest collection of
aeronautical and space science STI in the world.
The Program Office is also NASA’s institutional
mechanism for disseminating the results of its
research and development activities. These results
are published by NASA in the NASA STI Report
Series, which includes the following report types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results of
NASA programs and include extensive data
or theoretical analysis. Includes compilations
of significant scientific and technical data and
information deemed to be of continuing
reference value. NASA’s counterpart of peer-
reviewed formal professional papers but
has less stringent limitations on manuscript
length and extent of graphic presentations.

• TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or
of specialized interest, e.g., quick release
reports, working papers, and bibliographies
that contain minimal annotation. Does not
contain extensive analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or cosponsored by
NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to NASA’s
mission.

Specialized services that complement the STI
Program Office’s diverse offerings include
creating custom thesauri, building customized
databases, organizing and publishing research
results . . . even providing videos.

For more information about the NASA STI
Program Office, see the following:

• Access the NASA STI Program Home Page
at http://www.sti.nasa.gov

• E-mail your question via the Internet to
help@sti.nasa.gov

• Fax your question to the NASA Access
Help Desk at 301–621–0134

• Telephone the NASA Access Help Desk at
301–621–0390

• Write to:
           NASA Access Help Desk
           NASA Center for AeroSpace Information
           7121 Standard Drive
           Hanover, MD 21076



John Gayda and Timothy Gabb
Glenn Research Center, Cleveland, Ohio

Two Dimensional Viscoelastic Stress Analysis of
a Prototypical JIMO Turbine Wheel

NASA/TM—2005-213650

June 2005

National Aeronautics and
Space Administration

Glenn Research Center



Available from

NASA Center for Aerospace Information
7121 Standard Drive
Hanover, MD 21076

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22100

This report is a formal draft or working
paper, intended to solicit comments and

ideas from a technical peer group.

This report contains preliminary
findings, subject to revision as

analysis proceeds.

Available electronically at http://gltrs.grc.nasa.gov



NASA/TM—2005-213650 1

Two-Dimensional Viscoelastic Stress Analysis of a  
Prototypical JIMO Turbine Wheel 

 
John Gayda and Timothy Gabb 

National Aeronautics and Space Administration 
Glenn Research Center 
Cleveland, Ohio 44135 

 
 

Introduction 
 

The designers of the Jupiter Icy Moons Orbiter (JIMO) are investigating the potential of nuclear 
powered-electric propulsion technology to provide deep space propulsion. In one design scenario a 
closed-Brayton-cycle power converter is used to convert thermal energy from a nuclear reactor to 
electrical power for the spacecraft utilizing an inert gas as the working fluid to run a turboalternator as 
described in reference 1. A key component in the turboalternator is the radial flow turbine wheel which 
may be fabricated from a cast superalloy. This turbine wheel is envisioned to run continuously over the 
life of the mission, which is anticipated to be about ten years. This scenario places unusual material 
requirements on the turbine wheel. Unlike the case of terrestrial turbine engines, fatigue, associated with 
start-up and shut-down of the engine, foreign-object damage, and corrosion issues are insignificant and 
thus creep issues become dominate. 

The purpose of this paper is to present estimates for creep growth of a prototypical JIMO turbine 
wheel over a ten year life. Since an actual design and bill of materials does not exist, the results presented 
in this paper are based on preliminary concepts which are likely to evolve over time. For this reason, as 
well as computational efficiency, a simplified 2–D, in lieu of a 3–D, viscoelastic, finite element model  
of a prototypical turbine wheel will be utilized employing material properties for the cast superalloy 
MAR-M247. The creep data employed in this analysis are based on preliminary data being generated at 
NASA Glenn Research Center. 
 
 

Material 
 

Previous closed-Brayton-cycle space power conversion demonstration units, reference 2, built under 
contract to NASA by Garrett and operated by NASA, have employed a cast superalloy turbine wheel. In 
particular the temperatures, stresses, and times encountered in these units allowed the use of the cast 
superalloy IN713. The proposed JIMO mission may require additional creep capability and for this reason 
superalloys with improved creep strength are being considered. These state-of-the-art superalloys include 
next generation powder metallurgy (PM) disk alloys, such as ME3 or LSHR that were developed in 
NASA’s High Speed Research/Ultra-Efficient Engine Technology programs, as well as advanced cast 
superalloys, such as IN792 or MAR-M247. In general, the PM superalloys provide superior creep 
strength at temperatures below 1300 °F (977 K), while the advanced cast superalloys provide superior 
creep strength at temperatures above 1300 °F (977 K). The choice of material for the turbine wheel will 
depend on the final design criteria and could employ either a PM superalloy or a cast superalloy.  
MAR-M247 was selected for the stress analysis presented in this paper, since it represents the alloy types 
with the best high-temperature creep strength. As shown in figure 1, MAR-M247 has the highest 
allowable stress for creep rupture in one thousand hours at 1600 °F (1144 K), and therefore has the best 
temperature margin of the four alloys compared. 

MAR-M247 is a cast, nickel-base superalloy. The composition of the alloy and heat treatment 
schedule used in this study are provided in table I and II. Its creep strength is derived from a high volume 
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fraction of the gamma prime (Ni3Al) precipitate, a significant amount of solid solution strengthening by 
alloying additions such as tungsten and tantalum, and the large grain size typical of superalloy castings. 
The typical microstructure presented in figure 2, shows a grain size of several millimeters for the cast bars 
currently being employed to generate creep data on MAR-M247 for this project. 

Long-term creep data is being generated by NASA Glenn on MAR-M247 to support the JIMO power 
conversion design. These data include constant-load creep tests in air and helium over a wide range of 
temperatures and applied stresses. A typical creep curve is presented in figure 3. Creep rate is the slope of 
the creep strain versus time curve. For design purposes, creep rates are compared at a common point in 
the curve, 1 percent creep strain in this study. Creep rates calculated from on-going experiments are 
presented in figure 4. Test data at the lower creep rate regimes have not yet reached 1 percent creep strain, 
thus rate data are calculated by dividing current measured creep strains by total test time. Test results 
presented in figure 4 for higher creep rates were calculated in the standard fashion at 1 percent creep 
strain. The majority of data shown here were generated in air. Initial testing in helium shows comparable 
results for the limited data available at this time. 

For the creep analysis employed in this paper the raw creep rate data plotted in figure 4 were fit with 
a power law creep expression: 
 

 ∆ε/∆t = Aσn 
 

In the above expression, ∆ε/∆t is the creep rate, σ is the applied stress, while A and n are data derived 
constants. Using an exponent of n = 6.7 a good fit of the data is obtained at 1300 and 1500°F (977 and 
1089 K). Values of A determined from the current data are presented in table III along with temperature-
dependent values for modulus and thermal expansion rates for MAR-M247 obtained from reference 3. 
These values were used in the subsequent finite element analyses. 
 
 

Turbine Wheel Analysis 
 

The two-dimensional, axisymmetric turbine wheel model utilized in this paper is presented in  
figure 5. The blading on a 2–D model can, by definition, only approximately simulate the actual 3–D 
blading on a real turbine wheel. The essential characteristics of the blade simulator in this model are 
twofold. First, it is relatively thin, and second, it delineates the boundary between the turbine inlet and 
outlet gas paths. The turbine wheel model depicted in figure 5 has a 3 in. (7.62 cm) radius and was 
meshed utilizing the automatic 2–D mesh generator provided by the AlgorTM finite element software 
package used in this analysis. 

To begin the analysis, the steady-state heat transfer module was utilized to predict the stabilized 
operating-temperature distribution of the turbine wheel. To obtain the temperature map presented in 
figure 6 the following assumptions were made. First, the following thermophysical properties for density, 
thermal conductivity and specific heat of the MAR-M247 were employed: 
 

ρ = 0.3lbs/in3 (8.3 g/cm3) 
k = 1.0Btu/hr/in/F (747 J/hr/cm/K) 

C = 0.1Btu/lbs/F (0.418 J/g/K) 
 

Second, the inlet and outlet gas temperatures were assumed to be 1600 and 1200 °F (1144 and 922 K) 
respectively, with a heat transfer coefficient of 0.1Btu/hr/F/in2 (29 J/hr/cm2/K) at the gas-wheel interface. 
Finally, the shaft of the turbine wheel was assumed to “see” the 400 °F (477 K) compressor temperature 
and a heat transfer coefficient of 0.2 Btu/hr/F/in2 (58 J/hr/cm2/K) was employed at this surface. The 
temperature distribution shown in figure 6 is typical of turbine wheels of this size class. It should be noted 



NASA/TM—2005-213650 3

that the maximum operating temperature is about 1400 °F (1036 K) using the aforementioned 
assumptions. 

The turbine wheel growth model requires a viscoelastic finite element analysis. This process is broken 
into two parts; one part analyzing the initial loading conditions and the other part analyzing the time 
dependent changes over the mission life. First, the wheel speed is set to 45,000 revolutions per minute 
(RPM) and the wheel temperature is increased from room temperature to the operating temperatures 
shown in figure 6. The resulting stresses and wheel growth are presented in figure 7. The imposition of 
elastic and thermal loading is a rapid process in comparison to the operating lifetime of the wheel. In this 
analysis, the elastic and thermal loads were imposed within 2 hours for computational convenience, which 
is a realistic timeframe in relation to the 10 year life of the JIMO mission. The second part required 
continued modeling to assess stress redistribution over a 100,000 hour mission life. Time steps of 10 
hours were employed for this segment of the analysis. The resulting stress distribution and growth of the 
wheel are presented in figure 8. Note, the overall stress distribution shows very little change and the creep 
growth of the wheel (node 182) and the blade simulator (node 498) are quite small compared to the elastic 
and thermal components of wheel growth. The most significant change in the stress distribution is seen at 
the shaft radius where relaxation of peak stress levels are observed. 

To further explore the stability of the design and assess changes in the rate of wheel growth 
associated with increasing operating temperatures, the aforementioned analysis was rerun assuming a heat 
transfer coefficient of 0.2Btu/hr/F/in2 (59 J/hr/cm2/K) at the gas-wheel interface. The increase in heat 
transfer results in an overall temperature increase and the maximum wheel temperature approaches  
1500 °F (1089 K). Comparisons of wheel growth between the initial analysis and the hotter turbine wheel 
are presented in figure 9. While the creep growth shows a significant increase relative to the first analysis, 
it is still small relative to the elastic and thermal components of wheel growth. 

 
 

Summary 
 
A two dimensional, axisymmetric, viscoelastic analysis of a prototypical JIMO turbine wheel was 

performed. The turbine wheel was assumed to be fabricated from a cast superalloy and had a 3 in.  
(7.62 cm) radius. The analysis was performed assuming a wheel speed of 45,000 rpm and using two 
significantly different temperature profiles. The baseline analysis had maximum blade temperatures near 
1400 °F (1036 K). In this case, the creep growth after 100,000 hours was small compared to the elastic 
and thermal components of wheel growth. A second case, with maximum blade temperatures near  
1500 °F (1089 K), showed a significant increase in creep growth relative to the first case, however, it was 
still less than the elastic and thermal components of wheel growth. These results suggest a superalloy 
turbine wheel will meet the requirements for the JIMO mission. 
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TABLE I.—COMPOSITION (WEIGHT PERCENT) OF MAR-M247 
Cr Co Mo W Ta Al Ti Hf C B Zr Ni 
8.2 9.2 0.5 9.6 3.2 5.6 0.7 1.3 0.08 0.01 0.01 BAL 

 
 

TABLE II.—HEAT TREATMENT SEQUENCE FOR MAR-M247 
 Step Temp 

°F (K) 
Time  
(hr) 

Comment 

1 2165 (1458) 4  Hot Isostatic Press at 25KSI (172 MPa)  
2 2225 (1491) 2 Gas Quench 
3 1975 (1352) 4 Gas Quench 
4 1600 (1144) 20 Air Quench 

 
 

TABLE III.—MATERIAL PROPERTIES OF MAR-M247 USED IN FINITE ELEMENT ANALYSIS 
Temp  
(°F) 

Modulus  
(PSI) 

Poisson  
Ratio 

Expansion  
Coefficient  

(F–1) 

A n 

0 30e8 0.3 6e-6 0 6.7 
1000 26e8 0.3 7e-6 0 6.7 
1300 25e8 0.3 8e-6 3.3e-39 6.7 
1500 24e8 0.3 9e-6 7.6e-37 6.7 
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Figure 1.—Applied stress leading to thousand hour rupture life  

at 1600 °F (1144 K) from reference 3. 
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Figure 2.—Etched microstructure of MAR-M247. 
 
 

 
Figure 3.—Typical creep curve for MAR-M247. 
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Figure 4.—MAR-M247 creep rate data from on-going experiments used  

in subsequent finite element analysis. 
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Figure 5.—Finite element mesh of 2–D axisymmetric turbine  

wheel model. Wheel has a 3 in. (7.62 cm) radius. 
 

 
Figure 6.—Temperature distribution in turbine wheel.  

Maximum wheel temperature is 1405 °F (1036 K). 
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Figure 7.—Wheel stress and growth (displacement) at 45,000 rpm shortly  
after achieving the operating temperature distribution shown in figure 6. 
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Figure 8.—Wheel stress distribution and radial growth at nodes  
182 (wheel) and 498 (blade tip) after 100,000 hours of operation. 
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Figure 9.—Comparison of radial growth at nodes 182 (wheel) and 498 (blade tip) after  
100,000 hours of operation with different temperature distributions  

derived from varying heat transfer assumptions. 
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